Corpus GrippeCanadaV3

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza A virus frequency in swine in Ontario, Canada.

Identifieur interne : 000065 ( Main/Exploration ); précédent : 000064; suivant : 000066

Assessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza A virus frequency in swine in Ontario, Canada.

Auteurs : Tatiana Petukhova [Canada] ; Davor Ojkic [Canada] ; Beverly Mcewen [Canada] ; Rob Deardon [Canada] ; Zvonimir Poljak [Canada]

Source :

RBID : pubmed:29856881

Descripteurs français

English descriptors

Abstract

Influenza A virus commonly circulating in swine (IAV-S) is characterized by large genetic and antigenic diversity and, thus, improvements in different aspects of IAV-S surveillance are needed to achieve desirable goals of surveillance such as to establish the capacity to forecast with the greatest accuracy the number of influenza cases likely to arise. Advancements in modeling approaches provide the opportunity to use different models for surveillance. However, in order to make improvements in surveillance, it is necessary to assess the predictive ability of such models. This study compares the sensitivity and predictive accuracy of the autoregressive integrated moving average (ARIMA) model, the generalized linear autoregressive moving average (GLARMA) model, and the random forest (RF) model with respect to the frequency of influenza A virus (IAV) in Ontario swine. Diagnostic data on IAV submissions in Ontario swine between 2007 and 2015 were obtained from the Animal Health Laboratory (University of Guelph, Guelph, ON, Canada). Each modeling approach was examined for predictive accuracy, evaluated by the root mean square error, the normalized root mean square error, and the model's ability to anticipate increases and decreases in disease frequency. Likewise, we verified the magnitude of improvement offered by the ARIMA, GLARMA and RF models over a seasonal-naïve method. Using the diagnostic submissions, the occurrence of seasonality and the long-term trend in IAV infections were also investigated. The RF model had the smallest root mean square error in the prospective analysis and tended to predict increases in the number of diagnostic submissions and positive virological submissions at weekly and monthly intervals with a higher degree of sensitivity than the ARIMA and GLARMA models. The number of weekly positive virological submissions is significantly higher in the fall calendar season compared to the summer calendar season. Positive counts at weekly and monthly intervals demonstrated a significant increasing trend. Overall, this study shows that the RF model offers enhanced prediction ability over the ARIMA and GLARMA time series models for predicting the frequency of IAV infections in diagnostic submissions.

DOI: 10.1371/journal.pone.0198313
PubMed: 29856881


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Assessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza A virus frequency in swine in Ontario, Canada.</title>
<author>
<name sortKey="Petukhova, Tatiana" sort="Petukhova, Tatiana" uniqKey="Petukhova T" first="Tatiana" last="Petukhova">Tatiana Petukhova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ojkic, Davor" sort="Ojkic, Davor" uniqKey="Ojkic D" first="Davor" last="Ojkic">Davor Ojkic</name>
<affiliation wicri:level="1">
<nlm:affiliation>Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mcewen, Beverly" sort="Mcewen, Beverly" uniqKey="Mcewen B" first="Beverly" last="Mcewen">Beverly Mcewen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Deardon, Rob" sort="Deardon, Rob" uniqKey="Deardon R" first="Rob" last="Deardon">Rob Deardon</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Production Animal Health, University of Calgary, Calgary, AB, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Production Animal Health, University of Calgary, Calgary, AB</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mathematics and Statistics, University of Calgary, Calgary, AB</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Poljak, Zvonimir" sort="Poljak, Zvonimir" uniqKey="Poljak Z" first="Zvonimir" last="Poljak">Zvonimir Poljak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29856881</idno>
<idno type="pmid">29856881</idno>
<idno type="doi">10.1371/journal.pone.0198313</idno>
<idno type="wicri:Area/Main/Corpus">000046</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000046</idno>
<idno type="wicri:Area/Main/Curation">000046</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000046</idno>
<idno type="wicri:Area/Main/Exploration">000046</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Assessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza A virus frequency in swine in Ontario, Canada.</title>
<author>
<name sortKey="Petukhova, Tatiana" sort="Petukhova, Tatiana" uniqKey="Petukhova T" first="Tatiana" last="Petukhova">Tatiana Petukhova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ojkic, Davor" sort="Ojkic, Davor" uniqKey="Ojkic D" first="Davor" last="Ojkic">Davor Ojkic</name>
<affiliation wicri:level="1">
<nlm:affiliation>Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mcewen, Beverly" sort="Mcewen, Beverly" uniqKey="Mcewen B" first="Beverly" last="Mcewen">Beverly Mcewen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Deardon, Rob" sort="Deardon, Rob" uniqKey="Deardon R" first="Rob" last="Deardon">Rob Deardon</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Production Animal Health, University of Calgary, Calgary, AB, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Production Animal Health, University of Calgary, Calgary, AB</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Mathematics and Statistics, University of Calgary, Calgary, AB</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Poljak, Zvonimir" sort="Poljak, Zvonimir" uniqKey="Poljak Z" first="Zvonimir" last="Poljak">Zvonimir Poljak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Forecasting (methods)</term>
<term>Incidence</term>
<term>Influenza A virus (physiology)</term>
<term>Models, Statistical</term>
<term>Ontario (epidemiology)</term>
<term>Orthomyxoviridae Infections (epidemiology)</term>
<term>Orthomyxoviridae Infections (veterinary)</term>
<term>Regression Analysis</term>
<term>Swine</term>
<term>Swine Diseases (epidemiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de régression</term>
<term>Animaux</term>
<term>Incidence</term>
<term>Infections à Orthomyxoviridae (médecine vétérinaire)</term>
<term>Infections à Orthomyxoviridae (épidémiologie)</term>
<term>Maladies des porcs (épidémiologie)</term>
<term>Modèles statistiques</term>
<term>Ontario (épidémiologie)</term>
<term>Prévision ()</term>
<term>Suidae</term>
<term>Virus de la grippe A (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="geographic" qualifier="epidemiology" xml:lang="en">
<term>Ontario</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Orthomyxoviridae Infections</term>
<term>Swine Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Forecasting</term>
</keywords>
<keywords scheme="MESH" qualifier="médecine vétérinaire" xml:lang="fr">
<term>Infections à Orthomyxoviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Influenza A virus</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Infections à Orthomyxoviridae</term>
<term>Maladies des porcs</term>
<term>Ontario</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Incidence</term>
<term>Models, Statistical</term>
<term>Regression Analysis</term>
<term>Swine</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de régression</term>
<term>Animaux</term>
<term>Incidence</term>
<term>Modèles statistiques</term>
<term>Prévision</term>
<term>Suidae</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Influenza A virus commonly circulating in swine (IAV-S) is characterized by large genetic and antigenic diversity and, thus, improvements in different aspects of IAV-S surveillance are needed to achieve desirable goals of surveillance such as to establish the capacity to forecast with the greatest accuracy the number of influenza cases likely to arise. Advancements in modeling approaches provide the opportunity to use different models for surveillance. However, in order to make improvements in surveillance, it is necessary to assess the predictive ability of such models. This study compares the sensitivity and predictive accuracy of the autoregressive integrated moving average (ARIMA) model, the generalized linear autoregressive moving average (GLARMA) model, and the random forest (RF) model with respect to the frequency of influenza A virus (IAV) in Ontario swine. Diagnostic data on IAV submissions in Ontario swine between 2007 and 2015 were obtained from the Animal Health Laboratory (University of Guelph, Guelph, ON, Canada). Each modeling approach was examined for predictive accuracy, evaluated by the root mean square error, the normalized root mean square error, and the model's ability to anticipate increases and decreases in disease frequency. Likewise, we verified the magnitude of improvement offered by the ARIMA, GLARMA and RF models over a seasonal-naïve method. Using the diagnostic submissions, the occurrence of seasonality and the long-term trend in IAV infections were also investigated. The RF model had the smallest root mean square error in the prospective analysis and tended to predict increases in the number of diagnostic submissions and positive virological submissions at weekly and monthly intervals with a higher degree of sensitivity than the ARIMA and GLARMA models. The number of weekly positive virological submissions is significantly higher in the fall calendar season compared to the summer calendar season. Positive counts at weekly and monthly intervals demonstrated a significant increasing trend. Overall, this study shows that the RF model offers enhanced prediction ability over the ARIMA and GLARMA time series models for predicting the frequency of IAV infections in diagnostic submissions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29856881</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Assessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza A virus frequency in swine in Ontario, Canada.</ArticleTitle>
<Pagination>
<MedlinePgn>e0198313</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0198313</ELocationID>
<Abstract>
<AbstractText>Influenza A virus commonly circulating in swine (IAV-S) is characterized by large genetic and antigenic diversity and, thus, improvements in different aspects of IAV-S surveillance are needed to achieve desirable goals of surveillance such as to establish the capacity to forecast with the greatest accuracy the number of influenza cases likely to arise. Advancements in modeling approaches provide the opportunity to use different models for surveillance. However, in order to make improvements in surveillance, it is necessary to assess the predictive ability of such models. This study compares the sensitivity and predictive accuracy of the autoregressive integrated moving average (ARIMA) model, the generalized linear autoregressive moving average (GLARMA) model, and the random forest (RF) model with respect to the frequency of influenza A virus (IAV) in Ontario swine. Diagnostic data on IAV submissions in Ontario swine between 2007 and 2015 were obtained from the Animal Health Laboratory (University of Guelph, Guelph, ON, Canada). Each modeling approach was examined for predictive accuracy, evaluated by the root mean square error, the normalized root mean square error, and the model's ability to anticipate increases and decreases in disease frequency. Likewise, we verified the magnitude of improvement offered by the ARIMA, GLARMA and RF models over a seasonal-naïve method. Using the diagnostic submissions, the occurrence of seasonality and the long-term trend in IAV infections were also investigated. The RF model had the smallest root mean square error in the prospective analysis and tended to predict increases in the number of diagnostic submissions and positive virological submissions at weekly and monthly intervals with a higher degree of sensitivity than the ARIMA and GLARMA models. The number of weekly positive virological submissions is significantly higher in the fall calendar season compared to the summer calendar season. Positive counts at weekly and monthly intervals demonstrated a significant increasing trend. Overall, this study shows that the RF model offers enhanced prediction ability over the ARIMA and GLARMA time series models for predicting the frequency of IAV infections in diagnostic submissions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Petukhova</LastName>
<ForeName>Tatiana</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0001-7348-3451</Identifier>
<AffiliationInfo>
<Affiliation>Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ojkic</LastName>
<ForeName>Davor</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McEwen</LastName>
<ForeName>Beverly</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Deardon</LastName>
<ForeName>Rob</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Production Animal Health, University of Calgary, Calgary, AB, Canada.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Poljak</LastName>
<ForeName>Zvonimir</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>06</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005544" MajorTopicYN="N">Forecasting</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015994" MajorTopicYN="N">Incidence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009980" MajorTopicYN="Y">Influenza A virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015233" MajorTopicYN="Y">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009864" MajorTopicYN="N" Type="Geographic">Ontario</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009976" MajorTopicYN="N">Orthomyxoviridae Infections</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000662" MajorTopicYN="N">veterinary</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012044" MajorTopicYN="N">Regression Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013553" MajorTopicYN="N">Swine Diseases</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>04</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>05</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29856881</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0198313</ArticleId>
<ArticleId IdType="pii">PONE-D-17-14800</ArticleId>
<ArticleId IdType="pmc">PMC5983852</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Int J Gen Med. 2012;5:381-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22615533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Res. 2015 Sep 28;46:114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26412219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IEEE Trans Neural Netw Learn Syst. 2012 Aug;23(8):1304-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24807526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2014 Nov 22;11:194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25416300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Aug 26;90(18):8266-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27384658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2015 Nov 15;212(10):1592-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25948864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Dec 09;10 (12 ):e0143791</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26649568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2014 Jul;8(4):482-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24725968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jun 7;12 (6):e0179044</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28591202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2014 Aug 13;15:276</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25123979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jun 01;10(6):e0127840</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26030614</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Alberta</li>
</region>
<settlement>
<li>Calgary</li>
</settlement>
<orgName>
<li>Université de Calgary</li>
</orgName>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Petukhova, Tatiana" sort="Petukhova, Tatiana" uniqKey="Petukhova T" first="Tatiana" last="Petukhova">Tatiana Petukhova</name>
</noRegion>
<name sortKey="Deardon, Rob" sort="Deardon, Rob" uniqKey="Deardon R" first="Rob" last="Deardon">Rob Deardon</name>
<name sortKey="Deardon, Rob" sort="Deardon, Rob" uniqKey="Deardon R" first="Rob" last="Deardon">Rob Deardon</name>
<name sortKey="Mcewen, Beverly" sort="Mcewen, Beverly" uniqKey="Mcewen B" first="Beverly" last="Mcewen">Beverly Mcewen</name>
<name sortKey="Ojkic, Davor" sort="Ojkic, Davor" uniqKey="Ojkic D" first="Davor" last="Ojkic">Davor Ojkic</name>
<name sortKey="Poljak, Zvonimir" sort="Poljak, Zvonimir" uniqKey="Poljak Z" first="Zvonimir" last="Poljak">Zvonimir Poljak</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/GrippeCanadaV3/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000065 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000065 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    GrippeCanadaV3
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29856881
   |texte=   Assessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza A virus frequency in swine in Ontario, Canada.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29856881" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrippeCanadaV3 

Wicri

This area was generated with Dilib version V0.6.35.
Data generation: Tue Jul 7 13:36:58 2020. Site generation: Sat Sep 26 07:06:42 2020